Squares and square roots are basic arithmetic. They are fundamental for understanding science (gravity, energy, sound, drag, viruses), finance (compound interest), and higher math (geometry).

1 ²	2 ²	3 ²	4 ²	5 ²	6 ²	7 ²	8 ²	9 ² 81
1	4	9	16	25	36	49	64	81

If you can do long division you can do square roots.

-	č			7.
	From the decimal point, separate ne numbers into pairs: 55 . 65 16			55 . 65 16
	Start at the left pair (55) loose the greatest square (<mark>49</mark>)			49
th	at can be subtracted from 55 ut the square root (7) above the first pair			7.
	Subtract the square			55.6516
5	Bring down the next pair			- 49
6 Pւ	Double the top number $(7 X 2 = 14)$ ut this number on the left		14	6 65
∎ 7	Divide this "doubled" number	(4)		7.4
	to the new "bottom" number (665), ut leave off the right digit (66)	14 66_		
	Put this quotient (4) above the second pa	ir		55 . 65 16 - 49
	Annex the quotient (4) to the		14	6 65
ทเ	umber on the left (14) and multiply it nes the quotient (4)			7
10	Subtract this number from	576		7.4
	e bottom number			55 . 65 16 - 49
	Bring down the next pair			———
12	2 Double the top number $(74 \text{ X } 2 = 148)$ as	nd put it on the left		6 65 - <u>5</u> 76
			148	89 16
	3 Divide this "doubled" number to the new "bottom" number (8916)	<u>6</u>		
	ut leave off the right digit (891_)	148 891_		7.4 6
	Put this quotient (6) above the third pair			55 . 65 16
15 nt	5 Annex the quotient (6) to the umber on the left (148) and multiply it	148 6 X 6		<u>– 49</u>
	nes the quotient (6)			6 65
	Subtract this number from e bottom number	8916	148	<u>-5 76</u> 89 16
∎ 17	7 The remainder is zero			- 89 16
be	ecause 556516 is a perfect square (746 ²)			0
ar	there is a remainder, either add zeros nd repeat steps 11 – 16 or add a plus sign			14.14 +
	ter the answer to indicate the answer is no he square root of $200 \approx 14.142135 \dots$)	ot exact.		0200.0000
``	· /	Joel Harrison 2021 emit.or	rg	•